2nd lecture

Electrostatics
Basic equations of electrostatics

The basic equations of electrostatics as derived from the local form of  Maxwell’s equations:
div D = (,  and 

rot E = 0, 

or in global form:
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If we would be already familiar with the Maxwell equations we could derive electrostatics like Coulomb’s law. Maxwell’s equations are new for us, however, thus we have to chose a different approach. We will start dealing with the experimentally observed electrostatic phenomena and and after discussing them we will derive the Maxwell equations based on these  experimental facts.
Electrostatics in vacuum

At the beginning we discuss the electrostatic phenomena in vacuo. From the point of electrostatics air is a rather good approximation of the vacuum. In vacuum there is no material medium  in other words there are no electric dipoles
P = 0,

consequently
D = (0E .
Thus the two laws of electrostatics in vacuum:
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The two fundamental experiments of electrostatics 
When a glass rod is rubbed with leather the glass acquires positive and the leather acquires negative charge. (We assume that the Reader of this lecture is familiar with the concept of positive and negative electricity.) 
The characteristic electrostatic experiment  with a conductor
If the positively charged glass rod nears to a small (i.e. light) conductor (e.g. a piece of aluminum foil) then the rod attracts the conductor and then repels it away. Explanation: fist electric influence separates the charges in the conductor, then the attractive force between the positive and negative charges pushes the conductor toward the glass rod. (Q: why the repulsive force due to the separated positive charge cannot block this motion?) 
The characteristic electrostatic experiment with an insulator


In this experiment we use again the positively charged glass rod but we apply a piece of insulator (e.g. cotton fibre or a small piece of paper ) . The first part of the experiment proceeds as in the case of the conductor: the little piece of the insulator is attracted to the glass rod. But after contacting the rod it is not repelled but stays there for a shorter or longer time. In the case of a perfect insulator it would stay there forever. This is reasonable because the charge from the rod cannot migrate into a perfect insulator with infinite resisitivity. On the other hand the charged rod could attract the insulator. This indicates that even in a perfect insulator the charges can separate somehow. However, charges like electrons, cannot migrate from one molecule of the insulator to another one. Nevertheless charge separation can occur inside the molecules of the insulator and the phenomenon is called polarization. Polarization will be discussed later.
Coulomb’s law
Let us place a positive charge +Q into the origin of a Cartesian coordinate system and let us place another so called test charge QP into another point P of that coordinate system. If the space vector of that point is r then we can write FP , the force acting on the test charge, with   Coulomb’s law in the following form:
FP = k(
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where k = 9x109 N(m2/C2 [N: Newton, m: meter, C: Coulomb = A(s A: Ampere s: second ]
and er is the unit vector parallel with r,  er=r/r. Thus two +1 C charges would repel each other with a force of 9x109 N. Moreover the vector equation shows the direction of the force which is a repelling one in the case of charges with the same sing and an attracting one for charges with different signs.

It is useful to introduce another constant instead k, namely (0 in the following way
k = 
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where (0 is the so called permeability of the vacuum:
(0 = 8.85x10-12 As/Vm.

Measurement of the electric field strength E

If we place a test charge QT  into a certain point of the electric field E, there we can measure a force FT acting on our test charge. This is already a measure of the electric field strength in that point. Nevertheless, if we use now another test charge different from the previous one, then we would measure a different force at the same point. This is because the force acting on the test charge does not depend on the electric field strength exclusively but it depends on the magnitude of the test charge itself. This is disturbing, because we do not like when the measured quantity is a function of the measuring device too (i.e. the test charge).  If we divide the force with the value of the test charge, however, then we obtain a quantity which depends on the electric field E only:
E = F/QT,

We will call this quantity as electric field strength.

Visualization of the electric field with lines of force or E lines and
visualization of a vector field in general

Gríz: wheat meal, grits (grits is made of corn mainly)

The electric field of a point charge

(E : flux of the electric field E on a given surface A 
as the number of E lines crossing that surface. 
Flux of a vector field in general
The number of E lines crossing a closed surface containing the charge Q

Let us regard a charge Q placed in the origin of a Cartesian coordinate system again. As we have seen the E field of such a charge can be expressed as

E = 
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Let us surround the charge with a sphere of radius r . The center of the sphere be at the  origin of the coordinate system. Now, if we want to calculate the number of E lines crossing the surface of the sphere, that is the flux of E (E for that surface, we have to apply the following surface integral:

(E  = 
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where dA is the surface vector of an infinitesimal surface element of the sphere. According to our convention (the surface vector is always the outer normal vector of a closed surface):

dA = dA(er.
Thus the flux of the E lines in this case:

(E  = 
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We know from geometry that the surface of a sphere is 4r2(, thus 
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The most important thing in this result is, that it does not depend on the radius r of the sphere.
Thus if we surround the charge by an arbitrary surface (see the Figure below) the number of E lines crossing that arbitrary surface will be the same like in the case of a sphere. This is because the E lines start from the positive charges and end I the negative ones exclusively: they cannot start from the empty space or end there. We have to emphasize that this is a 
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A positive charge surrounded by an arbitrary closed surface. 

The flux of the E lines for any closed surface (E = 
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property of the electric field and not a property of all possible vector fields. For example if Culomb’s law would have the following form:
E = 
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then the E lines would end in the empty space, and in the case of 

E = 
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the E lines would start from the empty space.
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Finally we remark that if a group of point charges are surrounded by a closed surface then the flux of the E lines 

for that surface is:
(E = 
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